
The droplet number moments approach to spray modelling:
The development of heat and mass transfer sub-models

J.C. Beck, A.P. Watkins *

Atomisation and Sprays Research Group, Mechanical, Aerospace and Manufacturing Engineering Department, UMIST, Manchester M60 1QD, UK

Received 6 December 2001; accepted 27 November 2002

Abstract

In the past most poly-disperse spray models have been based on either discretising the liquid flow field into groups of equally

sized droplets, as in the discrete droplet model (DDM) in which parcels of drops are tracked in space in a Lagrangian framework, or

by solving separate Eulerian conservation equations for a number of size ranges. Both of these approaches can result in very long

computing times, although the DDM is generally regarded as being superior in this respect under most conditions of interest.

Recently an alternative approach to the modelling of sprays has been developed by Beck [Ph.D. Thesis, UMIST, 2000] and Beck and

Watkins [Proc. R. Soc. Lond. A, 2003]. In this approach the size information concerning the spray is obtained by solving con-

servation and transport equations for two moments of the drop number distribution, and their respective mean velocities, and

obtaining two other moments from an assumed size distribution function. The sub-models required in this approach, for hydro-

dynamic phenomena in sprays, such as drop drag, break-up and collisions, have been presented elsewhere [Beck, Ph.D. Thesis,

UMIST, 2000; Beck and Watkins, J. Comp. Phys., 2002]. The purpose of this paper is to present those sub-models relating to the

mass and heat transfer processes in sprays. As part of this, an equation for the energy of the liquid phase is required. Standard gas

phase equations, including a k–e turbulence model, are also solved. All the equations are solved in a Eulerian framework using the
finite-volume approach. The inter-phase heat and mass transfers are captured through the use of source terms, and all the source

terms for these aspects of the spray model are derived in this paper in terms of the four moments of the droplet number distribution

in order to find the net effect on the whole spray flow field. The model has been applied to a wide variety of different sprays, in-

cluding high-pressure diesel sprays, wide-angle solid cone water sprays, hollow cone sprays and evaporating sprays [Beck, Ph.D.

Thesis, UMIST, 2000]. The comparisons of the results with experimental data show that the model generally performs well. In this

paper the evaporation effects are examined and compared with experimental data wherever possible. Again this aspect of the spray

model is shown to be generally successful.
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1. Introduction

The majority of computational spray models employ

the particle-source-in-cell method (Crowe et al., 1977)
or the discrete droplet model (DDM), Ducowicz (1980).

The DDM has been employed for a wide range of spray

simulations, particularly fuel sprays in engines (Gosman

and Johns, 1980; Reitz, 1987; Amsden et al., 1989;

Watkins, 1989; Chen and Perreira, 1992). The DDM

involves solving the equations of motion for a turbulent

carrier gas in a Eulerian scheme, and integrating La-

grangian equations of motion for liquid droplets along

true path lines. These two calculation schemes, and
therefore the two phases, are then coupled through

source terms in the transport equations. The major ad-

vantages of this over a purely Eulerian scheme are the

ability to efficiently discretise the liquid phase into

groups of identical droplets, and the fact that the

equations for the dispersed liquid phase are more nat-

urally written down in a Lagrangian manner. The dis-

advantage of the DDM is that it is dependent on
predicting the chaotic motions of individual droplets in

order to provide an overall picture of the spray. The
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stochastic models employed in producing this chaotic

motion require a large number of drop parcels to pro-

duce a smooth representation of the spray and are

therefore computationally expensive, although generally

recognised to be more efficient in this regard than the

current alternatives.

The Eulerian treatment (Harlow and Amsden, 1975;

Crowe, 1982) is inherently more efficient than its La-

grangian counterpart (Mostafa and Mongia, 1987) and

multi-size Eulerian treatments have been employed by

similar discretisation of the droplet size distribution

and consideration of each size group as a completely

Nomenclature

b impact parameter

BM mass transfer number

BQi source term due to break-up

Ccoll collisions parameter

cp specific heat capacity

Cl, Ce1, Ce2, Ce3 turbulence parameters

D diameter

E total energy
f vapour mass fraction

k thermal conductivity

k turbulent kinetic energy

L latent heat of vaporisation

M molecular weight

m mass

Ncoll number of collisions

nðrÞ number distribution
Nu Nusselt number

P pressure

P probability

pk generation of turbulence kinetic energy

p partial pressure

pr pressure ratio

Q droplet moment

Q0 total number
Q1 sum of radii

Q2 sum of squares of radii

Q3 sum of cubes of radii

R gas constant

Re Reynolds number

R0 universal gas constant

r drop radius

S source term
Sc Schmidt number

Sh Sherwood number

T temperature

t time

U velocity

V volume

vðrÞ volume size distribution

We Weber number
x coordinate direction, fraction

Greeks

aR Rosin–Rammler exponent

b spray cone angle

dij Kronecker delta

e turbulence kinetic energy dissipation rate

C diffusivity

l dynamic viscosity

m kinematic viscosity

h void fraction

q density
r surface tension, turbulent Prandtl number

Subscripts

a air

b bag break-up

cell cell

coal coalescence
coll collision

E energy

eff effective

evap evaporation

exp expansion

f , v vapour

g gas

i moment index
i, j velocity component

in input to liquid

k turbulence kinetic energy

l liquid

lam laminar

m mass

mix mixture of gases

p, q mean diameter parameters
R Rosin–Rammler

rel relative

s droplet surface, stripping break-up

sep separation

t turbulent

e dissipation rate

32 Sauter mean radius

Superscripts

n new time level

o old time level
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separate phase, (Mostafa and Elghobashi, 1985). How-

ever, this leads to a scheme involving many phases, if the

size distributions in the spray are to be fully captured,

and is thus computationally very expensive.
An alternative approach to the modelling of poly-

disperse sprays has been suggested by Beck (2000). The

liquid and the gas are both represented in the more ef-

ficient Eulerian formulation, and the full poly-disperse

nature of the spray flow is captured whilst only con-

sidering the liquid as one phase. The first four moments

of the droplet number distribution have been found to

provide an adequate representation of the poly-disperse
nature of the spray, and by solving equations for these

parameters, a fully multi-size model of the spray has

been constructed. The number of equations to be solved

is significantly fewer than in either of the previous poly-

disperse spray models making the scheme more com-

putationally efficient than its predecessors. The use of

these moments means that the spray is dealt with in

terms of average quantities, allowing a smooth repre-
sentation of the droplet size distribution at all points,

rather than a discrete representation. This is an advan-

tage even when considering phenomena such as droplet

break-up in which a discrete representation of the out-

come of the break-up would seem most appropriate, for

it is not the break-up process itself which is important

but rather its effect on the overall size distribution of the

spray. This latter quantity should remain smooth. These
distribution function moments are very useful parame-

ters in characterising the spray as they are inherently

related to the spray mean diameters. They are also the

terms needed in order to produce the source terms for

the effects of the spray on the gas phase when consid-

ering the spray as a whole (Beck, 2000; Beck and Wat-

kins, 2002, 2003).

2. Model formulation

2.1. Drop number probability distribution moments

The moments of the drop number probability distri-

bution are defined by

Qi ¼
Z 1

0

nðrÞri dr; ð1Þ

where nðrÞ is the fraction of droplets having radii be-
tween limits r þ dr=2 and r � dr=2.
In the new model the first four moments, Q0 to Q3 are

used. At a particular point in space and time, Q0 is the
total number of drops present, Q1 is the total sum of
radii of the drops, 4pQ2 is the total surface area of the
drops and 4pQ3=3 is the total volume of the drops.
Mean droplet diameters are often used to characterise

the droplet sizes in a spray; these four parameters pro-

vide all mean droplet diameters from D10 to D32, as by
definition,

Dp�q
pq ¼ 2

p�qQp

Qq
: ð2Þ

Hence it can be seen that these parameters contain a

great deal of information about the spray. In many re-

spects the most important of the four moments is Q3, as
assuming that locally all droplets have the same density,

this parameter defines the mass of liquid present per unit

volume. This means that the transport equation for Q3 is
equivalent to a liquid phase continuity equation. This

suggests strongly that any modelling done using these

moments must at least consider this fourth moment, and

it has been shown in earlier publications that the mod-

elling of important spray phenomena also require values
for the other three.

2.2. Moment–average quantities

Previous publications of the model have also dem-

onstrated that to write Eulerian transport equations for

the droplet moments, the mean speed at which the

moments are convected has to be defined and that the

mean speed must be different for each of the moments.

Logically the net convection of mass should occur at the

mass–average velocity, and the net convection of droplet

surface area (say) should occur at the surface-area–
average velocity, and there is no reason for these two

values to be the same. Larger droplets experience less

drag and generally have higher velocities than the

smaller droplets. This effect is modelled by ensuring that

the mass–average velocity is higher than the surface-

area–average velocity. The moment–average liquid ve-

locity vector Uli averaged over the ith moment Qi is

defined as

Uli ¼
R1
0

rinðrÞUl dr
Qi

: ð3Þ

From the definitions of the droplet moments, the mass–

average velocity is the correct velocity at which to con-

vect Q3 and the surface-area–average velocity is the
correct velocity at which to convect Q2. The same idea
can also be applied to moment–average energies to

capture the effect of small droplets heating up more
quickly than large droplets, although this approach has

not yet been implemented in the model.

The result of defining both the drop number moments

and the moment-averaged velocities is that the former

provide a representation of the distribution of droplet

sizes at each point in space and time, while the latter

provide the means by which the distribution of droplet

sizes can change in space and time. The two concepts
allied together are capable of providing a picture of the

behaviour of a poly-disperse spray.
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This model is not concerned with knowing the precise

velocity of every droplet, as is the case in the DDM, but

uses a selection of average velocities and their relation-

ship to each other to determine how the size distribution
evolves at each point in space and time. The key ques-

tion is whether this continuum averaging gives as good a

representation of the spray and its dynamics as can be

obtained by discretising the droplets into size groups.

Ample evidence has been provided by earlier publica-

tions that the answer to this question is yes.

2.3. Liquid phase transport equations

The transport equation for the fourth drop number

moment is written as the liquid mass conservation

equation

o

ot
ðqlð1� hÞÞ þ o

oxj
ðqlð1� hÞUl3jÞ ¼ �Sm: ð4Þ

The void fraction, h, which is the volume fraction of gas
in each computational grid cell, is given by

h ¼ 1� Vl
Vcell

¼ 1� 4pQ3
3

: ð5Þ

Thus h can be calculated directly from the fourth mo-
ment of the droplet number distribution function. The

convection velocity vector required is the appropriate

moment–average value Ul3. The source term Sm in Eq.
(4) has only one contribution due to evaporation, as the

other phenomena considered in the model do not affect
the total mass of liquid present.

The equations for the remaining moments take a

similar form, but more source terms must be included

due to the changes effected by droplet break-up, drop-

let–droplet collisions, evaporation, and changes in the

droplet density. The equations are

o

ot
ðQiÞ þ

o

oxj
ðQiUlijÞ ¼ �SQi : ð6Þ

Use of the ith moment–average velocity in these equa-
tions should be noted. In the present version of the

model, these equations are solved only for i ¼ 2, i.e. for
the surface-area moment, for reasons explained in Sec-

tion 3.2.

The liquid phase momentum equation, as used in the

calculation scheme, is derived in Beck and Watkins

(2003) and is written as

o

ot
ðqlð1� hÞUl3iÞ þ

o

oxj
ðqlð1� hÞUl3iUl3jÞ þ Ul3iSm

¼ o

oxj
qlð1

�
� hÞrvml

oUl3i
oxj

�
� SUi ; ð7Þ

where rv is the coefficient of Melville and Bray (1979).
The equations for the other moment–average veloci-

ties follow the same pattern,

o

ot
ðQkUlkjÞ þ

o

oxj
ðQkUlkiUlkjÞ þ

o

oxj
ðQkðUl3i � UlkiÞ

� ðUl3j � UlkjÞÞ þ Ul3iBQi þ UlkiðSQi � BQiÞ

¼ o

oxj
Qkrvml

oUlki
oxj

� �
� SUki ; ð8Þ

but there are important differences, notably the third

term on the left hand side of Eq. (8). The reasons for the

existence of this term are given in Beck and Watkins
(2003). Again, this equation is solved only for k ¼ 2 in
the present version of the model.

The liquid phase energy equation is more simply de-

rived as the temperature of the droplets in a region of

space is, in the present version of the model, considered

to be independent of the droplet radius. The equation

is written as

o

ot
ðqlð1� hÞElÞ þ

o

oxj
ðqlð1� hÞUl3jElÞ þ ElSm

¼ o

oxj
qlð1

�
� hÞrvml

oEl
oxj

�
� SE: ð9Þ

The source terms relating to the hydrodynamics of

the spray in Eqs. (6)–(9) are discussed in detail in Beck

and Watkins (2002), so the derivation of these will not

be considered further here, but they are quoted in Sec-

tion 3.3 for completeness. Those source terms in Eqs. (4)

and (6)–(9) relating to the heat and mass transfer pro-

cesses are the subject of this publication and therefore

their derivations are discussed in detail in Section 3.4.

2.4. Gas phase transport equations

The gaseous mass transport equation is written as

o

ot
ðhqgÞ þ

o

oxj
ðhqgUgjÞ ¼ Sm; ð10Þ

where Sm is the mass transferred from the liquid phase to
the gas phase per unit time within a control volume.

The gaseous momentum equation, including turbu-

lence effects, is written as

o

ot
ðhqgUgiÞ þ

o

oxj
ðhqgUgjUgiÞ

� Ugi
o

ot
ðhqgÞ

�
þ o

oxj
ðhqgUgjÞ

�

¼ o

oxj
leffh

oUgi
oxj

��
þ oUgj

oxi

��
� h

oP
oxi

� o

oxj

2

3
hqgkdij

� �
þ SmðUli � UgiÞ þ SUi : ð11Þ

The effective viscosity, leff , is given by

leff ¼ llam þ qgCl
k2

e
; ð12Þ
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where Cl is taken to be a constant equal to 0.09. The

source term SUi in Eq. (11) is the momentum exchanged

from the liquid to the gas per unit time in a control

volume.
Similarly, the gaseous stagnation energy transport

equation, including the mass transfer term, is written as

o

ot
ðhqgEgÞ þ

o

oxj
ðhqgUgjEgÞ � EgSm

¼ o

oxj

leff
rt

h
oEg
oxj

� �� �
� h

o

oxj
ðPUgjÞ þ SE; ð13Þ

where SE is the inter-phase energy transfer. The evapo-
ration model requires that the properties of the spray

vapour be taken into account. Hence a transport equa-

tion for the vapour mass fraction f must be solved. This
is formulated as

o

ot
ðhqgf Þ þ

o

oxj
ðhqgUgjf Þ � fSm

¼ o

oxj
leffh

of
oxj

� �� �
þ Sm: ð14Þ

This effectively changes the properties of the carrier gas.
The state equation becomes

P ¼ qgRmixTg; ð15Þ

where

Rmix ¼ R0
1� f
Ma

�
þ f
Mv

�
: ð16Þ

The specific heat capacity of the mixture is given by

cp;mix ¼
ð1� prÞMacp;a þ prMvcp;v

ð1� prÞMa þ prMv
; ð17Þ

where the ratio of the average partial pressure of the

vapour to the total pressure is given by

pr ¼
Pv
2P

: ð18Þ

The turbulence model employed is a two-equation

model, the equations being solved for the turbulence

kinetic energy k, and its dissipation rate e. The equations
are

o

ot
ðhqgkÞ þ

o

oxj
ðhqgUgjkÞ � kSm

¼ o

oxj

leff
rk

h
ok

oxj

� �� �
þ hPk � qgeh ð19Þ

and

o

ot
ðhqgeÞ þ

o

oxj
ðhqgUgjeÞ � eSm

¼ o

oxj

leff
re

h
oe
oxj

� �� �
þ hCe1Pk

e
k
� hCe2

qge
2

k

þ hCe3qge
oUgj
oxj

: ð20Þ

The turbulence kinetic energy production rate is given

by

Pk ¼ qgCl
k2

e
oUgi
oxj

�
þ oUgj

oxi

�
oUgj
oxi

: ð21Þ

The constants take the values Ce1 ¼ 1:44, Ce2 ¼ 1:92,
Ce3 ¼ �0:373, rt ¼ 0:9, rk ¼ 1:0, re ¼ 1:3. The term in-
volving Ce3 is an addition due to the effect of the liquid

phase on the gas phase turbulence. All the source terms

in Eqs. (10), (11), (13) and (14) are calculated by con-

sidering the effect of the gas phase on the liquid phase in

terms of the droplet number distribution function mo-
ments. As already noted above, these are discussed in

Section 3, particularly where they relate to heat and

mass transfer.

2.5. Computational solution

The spray test cases studied in this paper are axi-

symmetric, thus here the equations are solved on a two-
dimensional axisymmetric orthogonal computational

grid. Euler implicit temporal differencing and hybrid

upwind/central spatial differencing are employed. Dis-

cussion of these issues and the algorithm used can be

found in Beck and Watkins (2002).

3. Spray sub-models

To form a complete simulation of spray behaviour,

many phenomena found in sprays require modelling. In

general, these models are more naturally described in a

Lagrangian framework, and hence the majority are

written in this form, although all are incorporated into a

Eulerian frame within the model. The Eulerian models

described in the literature tend to consider dilute sprays,
for which many of these phenomena can be neglected, as

it is conceptually more difficult to write the sub-models

in this form, especially those for droplet break-up and

collisions.

3.1. Inlet conditions

Although not strictly a sub-model, a brief discussion

of the inlet conditions is given here for completeness.

The applications of the model made to date assume the

spray to be fully atomised within a few (normally one or

two) grid cells from the nozzle exit. This is not an es-
sential feature of the model, as a drop break-up sub-

model could equally well be used to atomise the inlet

liquid, as is often done in DDM applications. The

modelling of the spray injection is based on the injection

cell treatment of Watkins (1989). The injector is located

within this cell or cells, and it is assumed that the gas has

entrained to the liquid velocity by the downstream face
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of the cell(s). The velocities and void fraction are cal-

culated there by one-dimensional inviscid flow analysis.

Some minor adjustments have been made to the basic

injection cell concept for this spray model, and it has
been applied to both solid cone and hollow cone sprays.

The main difference in this work from the injection

cell treatment of Watkins (1989) is that the injection

domain is comprised of more than one cell. The main

reason for this is that it allows a greater range of radial

velocities to be applied to the spray at inlet, given that

the liquid velocities are applied at cell faces, and that

there are no droplet groups. The fineness of grid with
which this model is able to work allows the injection

domain to be comprised of a number of cells (up to five

radial cells have been used successfully), and yet be

smaller than the injection domain used in most DDM

calculations. An advantage of the axisymmetric grid

being used in the present applications is that if the spray

is approximately conical in the injection cell(s), the ra-

dial size of the domain can be chosen such that the spray
is exactly fitted into the injection cell(s) domain at the

downstream face. This results in removal of the over-

prediction of the amount of gas being entrained that is a

problem when using axisymmetric grids with DDMs. A

schematic of the injection domain for a full cone spray is

presented in Fig. 1. The equations solved in order to

produce the downstream values of velocity components

and void fraction, for both full cone and hollow cone
sprays, are presented in Beck and Watkins (2002), so

will not be repeated here.

Using the calculated value of the void fraction at the

downstream face of the injection domain, the value of

Q3 can be calculated via Eq. (5). The value of Q2 is then
calculated from a prescribed inlet Sauter mean radius

(SMR), and the other two moments can then be calcu-

lated from a truncated form of the assumed distribution,
as described in the next sub-section. For each direction,

all the moment-averaged velocity components are as-

signed the same value, calculated as outlined above.

3.2. Droplet number distribution assumptions

Accurate representation of the spectrum of droplet

sizes is essential in the modelling of poly-disperse sprays.
Initially the calculation scheme was intended to provide

enough information about the droplet size distribution

to model the spray by predicting the first four moments

of the number distribution function from transport

equations. The break-up and collisions models require a

means of predicting the surface area or total radius of

part of the distribution, and not the whole. The only

way to do this is to produce a function that approxi-
mates the droplet number distribution function, and has

moments that match those provided by the distribution

function. As the model allows the four moments to be

transported at different velocities, the poly-disperse na-

ture of the flow can be simulated. This, however, brings

its own problems. Unless the moments tend towards

having similar velocities at the edge of the spray, the

droplet sizes at the periphery quickly become either very
large or very small causing the numerical scheme to

become unstable. It has proved too great a task to date

to ensure that all four velocities are similar enough at

the spray edges for the scheme to be reliable in most

cases. Instead transport equations are solved for fewer

than four moments, and hence fewer moment–average

velocities. Using the calculated moments an approxi-

mate distribution function is derived from which the
remaining moments are evaluated. This has two ad-

vantages over the four-moment approach. Firstly, there

are fewer moment–average velocities allowing a greater

likelihood of being able to keep the scheme stable at the

spray periphery, and fewer transport equations are be-

ing solved which reduces the amount of computational

work done. To date only a two-moment scheme has

been successfully applied.
The SMR is generally considered the most important

parameter in the size distribution function, and so it

would seem sensible to use the SMR as the parameter

required in a two-moment distribution function. Other

desirable qualities in this distribution function are ac-

curate representation of typical droplet size distributions

and ease of analytic integration in order to avoid having

to perform numerical integrations.
An analytically integrable function to use as a num-

ber distribution was sought such that the volume dis-

tribution it produced was a reasonable approximation

to a Rosin–Rammler distribution. The Rosin–Rammler

volume distribution is commonly applied in sprays,

particularly for solid-cone diesel sprays. It is defined by

vðrÞ ¼ aR
raR
R

� �
raR�1 exp

�
� r

rR

� �aR�
; ð22Þ

where rR is known as the Rosin–Rammler mean radius,
and aR the Rosin–Rammler exponent. rR is the droplet
radius for which 63% of the liquid mass is made up of

β

Injection Cell Length

Spray Cone Half-Angle

Injection Domain Boundary

Boundaries of Cels Within
Injection Domain

Injector
Radius

R
adius of D

ow
n stream

 Face of D
om

ain

Fig. 1. Injection domain and parameters for a solid cone spray.
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droplets with smaller radii. The exponent determines the

shape of the distribution, and the majority of sprays

have distributions with exponents between the values of

2 and 4, and mostly at the lower end of this range, as
reported by Wang and Lefebvre (1987). Thus it was

chosen to match a Rosin–Rammler distribution of ex-

ponent 2. The number distribution found to do this is

nðrÞ ¼ 16r
�rr232
exp

�
� 4r
�rr32

�
; ð23Þ

where the SMR �rr32 is used as all the droplet moments
are defined in terms of the droplet radii. The comparison
of the volume distribution produced by this approxi-

mation with the Rosin–Rammler distribution is made in

Fig. 2. This shows that the volume of very small droplets

is slightly less in the new distribution compared to the

Rosin–Rammler distribution and the volume of mid-

range droplets is greater. However, the distributions

match excellently for large droplets. The new distribu-

tion is a good enough approximation to be at least as
good a representation of the Rosin–Rammler distribu-

tion as produced by a discretisation into separate

droplet groups, unless a very large number of groups is

considered.

The approach used is to consider the initial full dis-

tribution as a reference distribution based on a reference

SMR which is invariant, and changes in the local SMR

are obtained by truncating the distribution to match the
SMR as predicted by the transport equations for Q3 and
Q2. Values of SMR larger than the reference value are
obtained by removing the small droplets from the dis-

tribution, and SMR values smaller than the reference

value are obtained by removing the large droplets from

the distribution. The other two moments can then be

found from this truncated distribution. This model is

equivalent to assuming that the change in the droplet

size distribution is due to only larger droplets being

convected into some regions of the spray and only small

droplets reaching other regions. The key reason for
choosing this approach is that the truncated distribution

tends towards having mono-disperse behaviour which-

ever end is being truncated. Therefore, once a certain

droplet size is reached at the spray periphery, the

moment–average velocities can be considered to be

identical, and hence the instability problems can be

completely solved.

The truncated distribution is also used to provide the
number, total radius, and sum of squares of radii of

droplets undergoing break-up and collisions. Details of

how this is achieved can be found in Beck (2000). The

manner in which these variables are applied into the

hydrodynamic source terms of the conservation equa-

tions is set out in detail in Beck and Watkins (2002), but

the final forms are also given here for completeness.

3.3. Hydrodynamic inter-phase source terms

The final derivations depend on the details of the sub-

models employed. For example, in the current applica-

tions of the model the drag on the drops is modelled

as for solid spheres, and the momentum source terms

become

SU3j ¼ 6plgUrel;jQ1

þ 1:8pðqgjUreljQ2Þ
0:687 lgQ1

2

� �0:313
Urel;j: ð24Þ

A different source term would be obtained if, e.g., drops

were modelled as oscillating between spheres and discs.

This latter model has not been implemented to date, but
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there is no intrinsic reason to prevent its use within the

present modelling approach.

A similar derivation is performed for the liquid sur-

face-area–average velocity source term. This source term
is given by

SU2j ¼
9

2

Q0
ql

Urel;jlg

þ 1:35
ql

Urel;j
lgQ0
2

� �0:313
ðjUreljqgQ1Þ

0:687
: ð25Þ

The droplet break-up model accounts for the effects

on the droplet distribution function moments of the

break-up of unstable droplets. There are generally con-

sidered to be three types of droplet instability (Liu and

Reitz, 1993) they can undergo bag break-up, stripping

break-up and surface wave break-up. The last of these is

mainly seen in the initial atomisation of the spray, and
so the models used to date only consider the other two.

These are straightforward in nature and have been used

in many DDM codes. For stripping break-up, the

change in the surface area per unit time for a single

droplet is given by

SQ2;s ¼
ðQ2;sQ1;sÞ

1
2

6:2 ql
qg

� �1
4 ll
2qlUrel

� �1
2 rs
Urel

ql
qg

� �1
2

� Q1;s

rs
Urel

ql
qg

� �1
2

ð26Þ

and Q1;s and Q2;s are the total radius and total sum of
squares of radii of drops undergoing stripping break-up.

For bag break-up, no appropriate correlation has

been found in the literature, and so the surface area is

assumed to double in the break-up, which is equivalent

to the production of eight equally sized droplets. Thus

the term becomes

SQ2;b ¼
Q0;bQ1;bð Þ

1
2

p ql
2r

� �1
2

: ð27Þ

Q1;b and Q0;b represent the total radius and total number
of the droplets undergoing bag break-up.

The latter two source term contributions to the

change in the third droplet distribution moment are then

summed to give the total change in the moment due to

break-up. As this model only provides a value for the
change in the third droplet moment, it is only appro-

priate for use when transport equations are being solved

for only the third and fourth moments, and the other

two approximated from a presumed distribution.

The collisions model is semi-empirical, and has three

stages. The first stage is to determine the number of

collisions between droplets occurring in any control

volume. This is based on the collision frequency concept
of O�Rourke and Bracco (1980). This approach to col-
lision modelling is also followed in many DDMs. In the

current model the number of collisions is given by

Ncoll ¼ CcollpUrelðQ0Q2 þ Q21Þ; ð28Þ

where Ccoll is a model constant introduced due to the
prediction of large numbers of collisions with this

model. It is usually taken as 0.15. The relative velocity

between droplets is approximated by assuming that the
large droplets are travelling at approximately the mass–

average velocity, and the small droplets have been fully

entrained to the gas velocity. This means that the aver-

age droplet–droplet relative velocity is approximated as

one half of the relative velocity between the mass–

average liquid velocity and the local gas velocity.

The second stage of the model determines how many

of these collisions result in each of the regimes of co-
alescence, bounce and separation, described by Orme

(1997). The two parameters required to determine these

numbers are the Weber number, defined as

We ¼ 2rqlUrel
r

ð29Þ

and the impact parameter, b. The impact parameter is
defined as the perpendicular distance from the centre of

one droplet to the relative velocity vector placed on the

centre of the other droplet at impact, normalised by

the sum of the radii. Jiang et al. (1992) provide a map of
the different collision regimes on a graph of Weber

number against impact parameter. Their original chart

for hydrocarbon droplets is simplified for the purposes

of the present model as shown in Fig. 3. The thresholds

between regimes are slightly dependent on the ambient

pressure. However, this effect has been neglected to date.

The chart used is based on an ambient pressure of 0.1

MPa. A similar chart has also been used for water
droplets (Beck (2000)).

The critical Weber numbers shown on the chart are

translated into critical radii, and an assumed distribu-

tion is used to determine the probability that any given

droplet lies between adjacent critical radii. The outcome

of a collision depends mainly on the Weber number of

the smaller droplet, according to Orme (1997), and the

impact parameter. For the hydrocarbon droplets, there
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exist three critical radii, and the probability that the

smaller radius of the two colliding droplets falls between

given critical radii is determined from the chart. The

total coalescence probability for hydrocarbon droplets is
given as the sum of the probabilities of the drops falling

within the different ranges for coalescence. The proba-

bility of separation after collision is also derived from

the chart.

The final stage of the collisions model is to determine

the effect of the predicted collisions on the droplet mo-

ments, specifically the surface area, as the liquid mass is

conserved during the collision. The surface area change
is modelled as being equal to that obtained from a col-

lision between two droplets of equal radius and to result

in either one (coalescence) or five (separation) droplets,

also of equal radius, such that the droplet volume is

conserved. The effect of changing the number of drop-

lets produced in separation has not been tested. The

inlet droplet size, r, is dependent on the inlet Weber
number, and the values it takes for each regime are
presented in Table 1 for hydrocarbon droplets, along

with the change in the square of the radius, dQ2, re-
sulting from the collision. The source term for the

surface area moment is

SQ2;coll ¼ NcollðPcoll;adQ2;a þ Pcoll;bdQ2;b þ Pcoll;cdQ2;c
þ PsepdQ2;sepÞ ð30Þ

for hydrocarbon droplets. Similar equations and tables

have been produced by Beck (2000) for water droplet

collisions.

3.4. Heat and mass transfer source terms

In this section those source terms in the conservation

equations that specifically relate to the evaporation

processes are described and derived in detail. These have

previously only been presented in Beck (2000).

The mass lost from a single droplet is

_mm ¼ 2pr k
cp

� �
g

Sh; ð31Þ

where Sh is the Sherwood number. For quiescent con-
ditions Sh ¼ 2. However, for moving drops an addi-
tional contribution due to turbulent convection is

required. Two forms of the Sherwood number for such

conditions have been proposed. The first is based on the

Spalding (1953) mass transfer number, defined

BM ¼ fs
1� fs

; ð32Þ

where subscript s refers to the drop surface conditions.

Then the Sherwood number is defined by

Sh ¼ 2 lnð1þ BMÞ: ð33Þ
An alternative form of Sh is given by a correlation, as
e.g. Ranz and Marshall (1952):

Sh ¼ 2 1
�

þ 0:3Re12Sc13
�
; ð34Þ

where Re is the Reynolds number, given by

Re ¼
2qgrjUrelj

lg
ð35Þ

and Sc ¼ ððl=qCÞÞg is the Schmidt number.
For the model presented here, the first form of the

Sherwood number has been used. However, use of the

alternative form is under investigation.

Then

_mm ¼ 4pr k
cp

� �
g

ln 1ð þ BMÞ: ð36Þ

Eq. (36) can be integrated over all droplets at a local

level to obtain the desired mass source term. The result

is

Sm ¼ 4p k
cp

� �
g

lnð1þ BMÞQ1: ð37Þ

The source term for the liquid surface area equation

can also be derived from the same starting point. The
loss in mass can be related to a change in radius by

dm ¼ ql4pr
2dr: ð38Þ

The change in the square of the droplet radius is related

to the droplet radius change via

dðr2Þ ¼ 2rdr: ð39Þ
Thus the change in the square of the droplet radius per

unit mass lost is

dðr2Þ
dm

¼ 1

2pqlr
: ð40Þ

Using Eq. (36), the change in the square of the radius

can then be written as

oðr2Þ
ot

¼ 2
ql

k
cp

� �
g

lnð1þ BMÞ: ð41Þ

Table 1

Determination of surface area change for collisions between hydrocarbon droplets

Inlet droplet radius, r Change in square of radius

rsmaller < ra ra dQ2;a ¼ ð22=3 � 2Þr2 ¼ �0:41r2
rb < rsmaller < rc 0:5ðrb þ rcÞ dQ2;b ¼ ð22=3 � 2Þr2 ¼ �0:41r2
rsmaller > rc (Coalescence) rc dQ2;c ¼ ð22=3 � 2Þr2 ¼ �0:41r2
rsmaller > rc (Separation) rc dQ2;sep ¼ ð5ð0:4Þ2=3 � 2Þr2 ¼ 0:71r2
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Integrating Eq. (41) over all droplets locally, the con-

tribution to the source term for Q2 from the change in
mass is given by

SQ2;evap ¼
2

ql

k
cp

� �
g

lnð1þ BMÞQ0: ð42Þ

The heat transferred between phases during the heat-
up period when the liquid is not at saturation temper-

ature is given by

Qin � Qevap ¼ 2prkg NuðTg
	

� TlÞ � Sh
L
cpg



; ð43Þ

where L is the latent heat of vaporisation for the liquid
and Nu is the Nusselt number.
For quiescent conditions, Nu ¼ 2. For turbulent

convective conditions, again two forms have been pro-

posed. The first employs the heat transfer number,

expressed in terms of the mass transfer number by

Nu ¼ 2 lnð1þ BMÞ
BM

: ð44Þ

The alternative form employs a correlation, such as that

due to Ranz and Marshall (1952):

Nu ¼ 2 1
�

þ 0:3Re12r13
�
; ð45Þ

where r ¼ ðcpl=kÞg is the Prandtl number. For the
model presented here, the first form has been employed.

Then

Qin � Qevap ¼ 4prkg lnð1þ BMÞ
Tg � Tl
BM

	
� L
cpg



: ð46Þ

This equation can be integrated locally over all droplets

to give

SE ¼ �4pkg lnð1þ BMÞ
Tg � Tl
BM

	
� L
cpg



Q1: ð47Þ

Note the presence of the minus sign due to the source

term being the energy gained by the gas phase in Eq.

(13), and lost by the liquid phase in Eq. (9). Care must

be taken when the temperature difference is very small,

but the liquid is super-saturated. For this type of mass

transfer, it is assumed that the liquid gains from the gas
exactly the energy it requires to evaporate the appro-

priate amount of mass. Hence the source term SE be-
comes zero in this case as the net transfer of energy

to the liquid is exactly zero.

The source terms for mass (Eq. (37)), momentum

(Eqs. (24) and (25)) and energy (Eq. (47)) are calculated

directly and can thus be straightforwardly implemented

into the corresponding conservation equations ((4), (7),
(8) and (9) for the liquid phase and (10), (11), (13) and

(14) for the gas phase). The equation for the liquid

surface area is less simple as it has many contributions,

from bag break-up, stripping break-up, collisions and

mass transfer. The source term used in Eq. (6) is the sum

of these, given by Eqs. (26), (27), (30), and (42), re-

spectively,

SQ2 ¼ SQ2;b þ SQ2;s þ SQ2;coll þ SQ2;evap: ð48Þ

4. Test cases

A number of test cases involving non-evaporating

sprays have previously been simulated using the new

model and the results are presented in Beck and Watkins

(2002, 2003). Those publications have demonstrated the

basic soundness of the new approach. They included test

cases that have allowed all the hydrodynamic sub-

models to be tested, including the drag, drop break-up

and drop collision sub-models. Also tested were the inlet
conditions, assumed size distribution approach, and

numerical aspects, such as the effects of grid size spacing

and time steps.

Beck (2000) also calculated a number of evaporating

sprays, and it is this work that is reported on here. The

behaviour of evaporating sprays is of much interest in

many engineering problems. Combustion in gas turbines

and in internal combustion engines is strongly con-
trolled by the dynamics of the injected spray. The

evaporation of the spray is a vital part of this process, as

it is the spray vapour that burns. Hence, for a numerical

model to be useful in the design process, both the spray

structure and the evaporation of droplets require accu-

rate modelling.

The performance of the model in predicting evapo-

ration is tested both in a series of parametric tests, and
in comparison with experimental data. Unfortunately

there is a dearth of useful data on evaporating sprays in

the literature that can be utilised for validating the

model performance. The experiments of Solomon et al.

(1985) described later are the most reliable and well

presented set of evaporative spray data found, and

considered likely to be the most valid test of the model

performance. However, before examining the abilities of
the model to quantitatively match experimental data,

the qualitative abilities are examined through paramet-

ric explorations.

5. Results and discussion

5.1. Parametric tests

The parametric tests are based on the test conditions

of Levy et al. (1997). These tests are designed to ensure

that the model captures all effects on the spray due to

evaporation. In the tests, a diesel spray is injected at 17

MPa and room temperature into a cylindrical chamber

of 80 mm diameter at an ambient pressure of 2 MPa. In

the base case the ambient gas temperature is 659 K. The
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nozzle has radius 0.1 mm and the spray angles are cal-

culated via correlations (Ranz, 1958). The simulations

are run using a time step of 2 ls and an injection cell of
largest side 1 mm. The complete grid used is presented in
Fig. 4. A similar grid structure is used for all the test

cases presented in this paper. As discussed later in this

paper, tests have been carried out to ensure the time step

and grid independence of the results. Thus effects such

as numerical diffusion caused by the first order nature of

the spatial discretisation scheme employed, are at least

partially eliminated. The inlet and reference droplet

SMR are both 7 lm. The results presented are the
droplet SMR obtained by considering all droplets at a

given axial distance from the nozzle, and the centreline

vapour mass fraction. Both are instantaneous results

obtained after 5 ms.

The basic structure of a narrow solid cone evapo-

rating spray is similar to that of a narrow cone non-

evaporating spray, as presented in Beck and Watkins

(2003). The structural analysis of evaporating sprays
concentrates on the effects of heat transfer, considering

the distributions of gaseous temperature and vapour

mass fraction. Beck (2000) demonstrates that the hot

ambient gas provides heat for the liquid and is cooled in

the region where droplets exist, with the lowest tem-

peratures being found along the centreline where the

liquid volume is the highest. The lowest gas tempera-

tures are found at the front of the spray highlighting the
large amount of heat taken from the gas in order to

facilitate the evaporation of the liquid droplets, and that

the time the liquid has spent in the gaseous environment

largely determines the temperature of its surroundings.

The distributions of vapour mass fraction support these

observations; these show that the vapour mass fraction

is very low in the near nozzle region due to the low

temperature of the injected liquid. The droplets then
heat up, which increases the rate of evaporation, and

hence the vapour mass fraction increases towards the

spray tip as these droplets have had the longest heating

time. The higher evaporation rates that are seen at the

very forward edge of the spray correlate to the lowest

observed gas temperatures. These observations are dealt

with in more detail in the subsequent paragraphs.

It should be noted that in Figs. 5–10 that follow, the

plotting of the results starts at 20 mm from the injector.

The reason for this is that for most of the phenomena

investigated the effects of system parameter variations
are small over the first 20 mm from the injector. The

expansion of the plots allowed by removing the first 20

mm ensures that the major variations further down-

stream are more discernible.

The temperature tests fall into a number of catego-

ries, with two temperatures that can be adjusted, namely

the temperature at which the spray is injected and the

initial temperature of the ambient gas. The effects on the
droplet SMR obtained by adjusting the ambient tem-

perature at low injection temperature are shown in Fig.

5(a). The SMR increases as the temperature is increased.

This is the opposite effect to that seen in non-evapo-

rating narrow cone sprays in which the number of col-

lisions causes an increase in the droplet SMR as the

density of the carrier gas increases. In this case, the gas

density reduces with temperature but the SMR in-
creases. This demonstrates that the effect is due to the

heat up and evaporation of the liquid droplets. The

smaller droplets evaporate more quickly than the large

droplets. As a result the SMR increases due to the

complete evaporation of small droplets and only larger

droplets remaining. The vapour mass fraction along the

centreline shown in Fig. 5(b) increases as the ambient

temperature is increased as the gas exchanges more en-
ergy with the liquid heating the drops faster so that they

evaporate more quickly. The exponential increase in the

vapour mass fraction reflects the increase in the rate of

mass exchange as the droplet temperature increases.

Very different behaviour is observed when the liquid

is injected at the saturation temperature. The droplet

sizes in these cases, as shown in Fig. 6(a), are much

smaller due to even the large drops experiencing ap-
preciable evaporation, and the sizes are much the same

in each case. The rate of droplet size increase with axial

distance also reduces in these cases as much of the liquid

mass is evaporated so that there are fewer droplets and

the rate of collisions reduces. The vapour mass fraction

along the centreline in Fig. 6(b) is much greater in these

cases due to the liquid evaporating at a fast rate im-

mediately after injection. The reduction in the vapour
mass fraction with axial distance is the result of two

effects. Firstly, the spray is spread more in the radial

direction at larger axial distances, so there is less liquid

to evaporate around the centreline. Secondly, the rate of

evaporation decreases due to the cooling of the sur-

rounding gas as it loses heat to the droplets in order that

they may evaporate. This cooling has more effect at

lower ambient temperatures, and hence the vapour mass
fraction is slightly higher when the ambient temperature

is higher.

It should be noted that the conditions simulated in

Fig. 6 would normally only apply in those cases where a

Fig. 4. Grid used for the parametric tests. The domain is 100 mm long

by 80 mm in radius with 109� 73 cells.
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liquid is stored at or near its boiling temperature or in

pressurised form at a temperature above its boiling

temperature when released into the environment.
However, it is important that the model be capable of

predicting those sorts of conditions, as well as the con-

ditions found in most fuel spray injections. For the

conditions experienced here the form of the mass

transfer number (Eq. (32)) should strictly be altered to

include the fact that the surrounding vapour mass

fraction will be significant in comparison with the value

found at the drop surface, due to the large amounts of
evaporation. Thus the proper equation to use would be

BM ¼ fs � f1
1� fs

; ð49Þ

where f1 is the vapour mass fraction far from the drop.
In reality for a finite-volume calculation procedure, as

used here, this would be the value of f at the centre of
the grid cell in which the drop resides. The results shown
above will thus be an over-estimate of the mass evapo-

rated, as use of Eq. (49) instead of Eq. (32) would reduce

by a small amount the predicted amount of fuel evap-

orated.

Fig. 7 shows the effect of adjusting the injection

temperature whilst maintaining the ambient gas tem-

perature of 293 K. No evaporation takes place for the
293 K injection temperature case, and the droplet SMR

increases downstream due to droplet collisions. The in-

jection temperatures in the other two cases with higher

temperatures are above the saturation temperature for

the liquid, thus evaporation immediately takes place.

The faster evaporation rate for the highest temperature

case causes the droplet size to reduce, both directly due

to the evaporation of the liquid mass and indirectly
by the reduction of the number of collisions resulting

from the existence of fewer droplets.

5.2. Evaporation models

The one-third rule (that is implemented in the model)

is tested to find if it produces different results from other

approximations for the droplet surface properties. The
models are designated by the fraction of the gaseous

temperature, x, used in the calculation of the droplet
surface temperature. Hence
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Ts ¼ xTg þ ð1� xÞTl: ð50Þ
The predicted drop sizes are almost independent of the

value of x used; Beck (2000) shows a maximum variation
of 3% by 80 mm downstream of the nozzle. Fig. 8 show

that the vapour mass fraction in the base test case is also

relatively insensitive to the model used for the surface

temperature. Thus, this case provides no evidence

for one of the models to be used in preference to the

others.

5.3. Numerical considerations

Over the range of time step used (0.5–2.0 ls) there are
no appreciable effects on the droplet sizes produced, so

this figure is not presented here. However, a small in-

crease in the vapour mass fraction is seen in Fig. 9 as the

time step is increased. The most likely explanation for

this is that the heat transfer and evaporation are de-

pendent on the liquid temperature at the beginning of

the time step, and hence the temperature difference is
maintained longer between the phases when a longer

step size is used, resulting in a slightly larger increase in

the droplet temperature in a given time. The effect is not

large, of the order of 10% 80 mm downstream of the

injector, so the results are reasonably independent of the

time step.
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The fineness of the grid has a larger effect on the re-

sults, Fig. 10(a) showing that the predicted SMR is

larger on a finer grid. This effect, which has also been

noted for non-evaporating sprays (Beck, 2000) is due to

the collisions model being more accurate with the use of

a finer grid in the dense parts of the spray. The larger
droplets evaporate less quickly, resulting in lower va-

pour mass fractions when the finest grid is used (Fig.

10(b)), although the difference is not great, being of the

order of 10% 80 mm from the injector. The vapour mass

fraction is no greater on the centreline using the coarsest

grid than the second coarsest grid due to the enhanced

numerical diffusion afforded by the coarseness of the

grid. In order to run a finer grid than those already
used, a smaller time step would be required, resulting in

longer simulation times.

5.4. Comparison with experiment

5.4.1. Experiments of Solomon et al. (1985)

The first set of experiments used for validation are

those of Solomon et al. (1985) in which freon-11 sprays
are injected into air at approximately saturation pres-

sure. Details are given in Table 2. The droplet sizes are

measured using slide impaction and flash photography.

Flash shadow photography was used for the combined

measurements of drop size and velocity. Inlet and ref-

erence SMR values have been chosen to optimise the

droplet size results. The injection domain has a maxi-

mum length of 1 mm. The grid used is very similar in

structure to Fig. 4, having exactly the same number of

grid lines in each direction, but it covers a larger area.

This is 300 mm long by 100 mm wide in this case. The

time step used was 5 ls. Predicted results are given after
0.5 s in both simulations, as the spray has been given

ample time to reach approximately steady conditions.

The results are plotted from 50 mm downstream of the

injector because the first data collection point in both

experiments was at or just beyond this point in the flow.

Fig. 11(a) presents the comparison of the experi-

mental droplet SMR values on the axis of each spray

with the values predicted by the model. The experi-
mental results show approximately constant centreline

SMR values in both cases. The model predicts lower

values of SMR at an axial distance of 60 mm in Case S1,

and also predicts that the SMR increases with distance,

matching the experimental value on average, but not in

detail. The low initial SMR values are most likely due to

the model over-predicting the level of evaporation in the

early stages of the spray. Initially the droplets become
smaller, but eventually the smallest drops begin to dis-

appear, and the SMR increases. The levels of evapora-

tion in Case S2 are smaller due to the droplets being

larger, and hence this phenomenon is not reproduced. In

fact, the agreement between experiment and computa-

tion is very good in this case, even the slight increase in

SMR with axial distance being successfully predicted.

This is due to the low evaporation rate that causes
a slight increase in the droplet SMR.

The comparison of the experimental and computa-

tional radial droplet SMR distributions at an axial

distance of 60 mm is shown in Fig. 11(b). Apart from

the small values of SMR at approximately 3 mm from

the axis, for which there is no obvious explanation, the

predicted SMR in Case S1 closely matches the experi-

mental SMR, which is constant with radial distance.
Presumably, high levels of evaporation in the 3 mm re-

gion cause the low SMR values there, and it is this lo-

cally high evaporation which results in the overall

Table 2

Conditions for the experiments of Solomon et al. (1985)

Case S1 Case S2

Injection velocity (ms�1) 64.5 29.64

Ambient pressure (kPa) 97 97

Spray angle 27� 29�
Nozzle radius (mm) 0.597 0.597

Injection temperature (K) 300 300

Ambient temperature (K) 300 300

Reference SMR (lm) 15 28

Inlet SMR (lm) 15 28
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the injection cell.
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evaporation being slightly over-predicted. The Case S2

results show excellent agreement with the experimental

droplet sizes. Again, the main difference between the
cases is the larger droplets (and slower velocities) in Case

S2, which result in lower evaporation levels. This sug-

gests that it is the evaporation model causing the droplet

SMR inaccuracies in Case S1, although which aspects

of the model cause the problems is unknown.

In general, it is not appropriate to compare droplet

velocity results obtained in experiment with the droplet

velocities in the model. This is because the experimental
results give a number-average velocity that is invariably

lower than either the surface-area–average or mass–

average velocities used in the model. The only exception

is very near the centreline at significant axial distances

from the nozzle where often all the droplets are found to

have very similar velocities, as they are almost in equi-

librium with the gas phase in this region. Hence, the

experimental droplet velocities used for comparison in
this case are for the larger droplets, as this best repre-

sents the mass–average velocity. The axial velocities

found in experiment and computation are compared in

Fig. 12(a). Case S1 shows a slight over-prediction of the

velocity at 60 mm, but then a good rate of velocity de-

crease. This shows that the drag model is performing

well, as has also been established for non-evaporating

sprays in earlier publications. This also shows that the

rate of evaporation cannot be too severely over-pre-

dicted, otherwise the velocity would reduce much more

quickly with axial distance, due to the reduction in

droplet momentum with the existence of much smaller

droplets. The results for Case S2 are similar to those for

Case S1 in that the velocity at 60 mm is slightly over-

predicted, but then the rate of velocity decrease is again

approximately correct.
Experimentally obtained radial distributions of axial

droplet velocities are only given for Case S1 at 60 mm

axial distance. The comparison of the experimental and

computational values is presented in Fig. 12(b). Good

agreement is seen between computation and experiment,

with the slight over-prediction of droplet velocity seen in

the centreline axial velocity values at 60 mm again being

observed.

5.4.2. Experiment of Drallmeier and Peters (1994)

The second experiment used for validation of solid

cone evaporating sprays is that of Drallmeier and Peters

(1994) who injected an isooctane spray from a pressure

swirl atomiser. Details of the experiment are given in

Table 3. Droplet sizes and liquid volume fluxes were

measured using phase Doppler anemometry and vapour
concentrations were measured using an infrared extinc-
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tion technique. The computational time step used was 4

ls and the injection cell had a largest side of 1 mm. The
full grid employed is very similar to that used for the

previous test cases, having the same number of grid lines
in each direction and covering the same physical space.

The radial distribution of SMR produced by com-

putation and experiment at three axial locations are

compared in Fig. 13(a). The centreline values show good

agreement at 50 mm from the injector, but at distances

greater than 150 mm the computations predict larger

values than given in the experiment. The experimental

values increase with axial distance due to the evapora-
tion of the smaller drops, and the results presented here

suggest that the computations capture this effect as the

computational values also increase. The increase in

droplet size is, however, over-predicted which suggests

that the preferential evaporation of the smaller droplets

is too great in the computations. The rate of change of

droplet size with radial distance is similar in computa-

tion and experiment, although the predicted values are
of the order of 10 lm greater than the measured values.
This is more evidence suggesting that the smaller drop-

lets are evaporated more preferentially in the computa-

tion than in the experiment.

The comparison of the radial distributions of axial

liquid mass flux at the same three axial locations is

presented as Fig. 13(b). All three locations show that the

spray is predicted as narrower by the computations than
shown by the experiments. This is opposite to the error

seen in wide-angle spray calculations (Beck (2000)). This

suggests that the error is in the initial conditions, and

that the uniform mass flux assumed at the downstream

face of the injection cell(s) is inaccurate. In this case it

appears that the mass is concentrated towards the larger

radii, as would be seen in a hollow cone spray. Sug-

gestions of error due to the first order nature of the
discretisation scheme used also carry weight. The low

liquid mass flux at the spray edge may also indicate that

the computational model has a higher evaporation rate

at larger radial distances than the experiments. This

observation is supported by the vapour mass flux re-

sults, presented next.

Comparison of the radial distributions of axial va-

pour mass flux at the axial locations of 50, 150 and 250

mm is made in Fig. 13(c). Reasonable levels of agree-

ment are seen between the experimental results and
those predicted by the computation. At all three loca-

tions, the predicted vapour mass flux is slightly under-

predicted at the centreline and slightly over-predicted at

larger radial distances. This highlights the fact that the

evaporation rate predicted is good, although slightly

higher in general than that found in the experiments.

6. Conclusions

A new model has been developed for the simulation

of poly-dispersed sprays. The model is based on eva-

luating the first four moments of the drop number dis-

tribution. To this end conservation and transport

equations have been constructed for the third and fourth

moments and their respective moment-averaged veloci-
ties. In addition, liquid energy and conservation equa-

tions for the gas phase are solved. The other moments of

the number distribution are obtained by truncating an

assumed number distribution. Sub-models relating to

the hydrodynamics of the flow have been included here

for completeness, but the main emphasis has been on the

heat and mass transfer processes. The source terms in

the liquid and gas phase conservation equations result-
ing from these processes have been derived.

In previous publications, Beck and Watkins (2002,

2003), of results obtained with the present model, the

model has produced excellent spray penetration results

in comparison with experimental data, thus validating

the inter-phase momentum transfer model. The perfor-

mance of the break-up and collisions models in dense

narrow angle sprays has been validated by good pre-
dictions of droplet sizes. The model has been success-

fully applied to hollow cone sprays, producing good

penetration and droplet size results. The collapse of the

hollow cone was also evident in the predictions. The

applications of the model have been less successful when

simulating wide-angle full cone water sprays. It was

concluded that this was due to incorrect assumptions

concerning the inlet mass flow rate distributions.
In this paper the model has been applied to the

simulation of evaporating sprays, both in a set of

parametric tests and in comparison with experimental

data. The parametric explorations have served to dem-

onstrate that the model reacts in the correct qualitative

manner to changes in input parameters. It has also been

demonstrated that the model is not greatly affected by

time step and grid dependence problems.
Overall, in comparison with experimental data, the

evaporation model predicts good results, with a ten-

dency to predict slightly high levels of evaporation.

The distribution of vapour mass flux in Case D is well

Table 3

Conditions for the experiment of Drallmeier and Peters (1994)

Case D

Injection pressure (MPa) 0.415

Injection velocity (ms�1) 24.5

Ambient pressure (MPa) 0.1

Injection temperature (K) 323

Ambient temperature (K) 323

Spray angle 60�
Nozzle radius (mm) 0.23

Inlet mass flow rate (kg/s) 1:37� 10�3
Reference SMR (lm) 20

Inlet SMR (lm) 15

J.C. Beck, A.P. Watkins / Int. J. Heat and Fluid Flow 24 (2003) 242–259 257



predicted. In test Case S2 where the droplet sizes are

relatively large the predicted mean droplet sizes are in

close agreement with experimental data, however in

Case S1 the mean droplet sizes generally become too

large as the preferential evaporation of small droplets is
over-predicted.

Thus the model has been successfully applied to

sprays involving heat transfer and evaporation, and the

relevant sub-models have been assessed. A slightly more

sophisticated evaporation model may be required in

order to eliminate the effect of the smaller droplets

evaporating too quickly in comparison with the larger

droplets. The inadequacies of the present sub-model for

evaporation in no way affect the basic correctness or

otherwise of the moment-averaging approach to spray

simulations.
There are a number of aspects of the heat and mass

transfer sub-models that require further research, in the

context of the moment-averaging approach. For exam-

ple, as mentioned in Section 2.2, the model currently

assumes that all drops locally have the same tempera-

ture, regardless of size, although the temperature can
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vary in space and time. In reality, even on a local level,

and certainly within the size scale defined by computa-

tional cells, the drop temperatures will vary, with the

small drops heating up more quickly than large drops. A
moment-averaging approach, similar to that used for

moment-averaged velocity components, as outlined in

Section 2.2, needs to be derived. This is the subject of

on-going research.
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